
Automatic text detection for mobile augmented reality translation

Marc Petter1 Victor Fragoso2 Matthew Turk2 Charles Baur1

1École Polytechnique Fédérale de Lausanne
{marc.petter, charles.baur}@epfl.ch

2University of California, Santa Barbara
{vfragoso, mturk}@cs.ucsb.edu

Abstract

We present a fast automatic text detection algorithm de-
vised for a mobile augmented reality (AR) translation sys-
tem on a mobile phone. In this application, scene text must
be detected, recognized, and translated into a desired lan-
guage, and then the translation is displayed overlaid prop-
erly on the real-world scene. In order to offer a fast au-
tomatic text detector, we focused our initial search to find
a single letter. Detecting one letter provides useful infor-
mation that is processed with efficient rules to quickly find
the reminder of a word. This approach allows for detect-
ing all the contiguous text regions in an image quickly. We
also present a method that exploits the redundancy of the
information contained in the video stream to remove false
alarms. Our experimental results quantify the accuracy and
efficiency of the algorithm and show the strengths and weak-
nesses of the method as well as its speed (about 160 ms on
a recent generation smartphone, not optimized). The algo-
rithm is well suited for real-time, real-world applications.

1. Introduction

Text detection in natural scenes is a field of active re-
search as it provides useful information for several appli-
cations, such as assistance for the visual impaired [3, 17],
multimedia database indexing and retrieval tasks [2], text
removal in video sequences [12], and others. Thus, many
inventive solutions have been proposed for achieving text
detection in natural scenes. The results and performance ob-
tained with those methods vary depending on the approach
and the intended application context. However, most of
these methods are not suitable for use in real-time applica-
tions and on mobile devices. The aim of this research was
to provide a novel and fast text detection algorithm for use
in mobile augmented reality using cell phones for computa-
tion and display.

The capabilities of mobile devices (with respect to com-
puting power, sensors, display resolution, etc.) have in-
creased dramatically in recent years, making mobile phones

Figure 1. The algorithm scans the input image (upper left) until
it finds a zone of interest that contains text (upper right). Sub-
sequently, the algorithm expands the zone of interest with effi-
cient rules (middle left), and finally, our method produces the final
bounding box (middle right and bottom row).

an important platform for a wide variety of applications.
One example of such an application is described in [8],
where Fragoso et al. presented an augmented reality transla-
tion application for smartphones which translates a word of
interest and presents the result in an augmented reality over-
lay on the live video stream. For initiating the translation
process, TranslatAR required the user to tap on the screen
near the center of the word of interest. In order to offer an
improved, more ergonomic version of the application, we
developed a fast text detection method that automatically
finds the text for translation.

1

Our algorithm introduces a novel method, intended for
use on mobile devices, for finding words in natural scene
images, typically of billboards, road signs, informative
signs or other texts that may be useful to translate. Some
reasonable assumptions were made to simplify the detection
of such words: (1) The surface on which the text is printed is
planar; (2) The text will be almost horizontal (0±δ degrees,
where δ is a small orientation distortion); and (3) The con-
trast between the background and the text is high. Although
these assumptions are occasionally violated, they describe
a high percentage of public signs and notices that are likely
targets for translation.

A key observation behind our algorithm is that words are
normally arrangements of closely-spaced letters on a single
line. Therefore, by only knowing the position of one letter
in a word, useful information can be extracted. This in-
formation can subsequently be processed by efficient and
effective rules, which can find the remaining letters of the
word. Ergo, a substantial amount of time can be spared
avoiding a conventional search for all the letters in a word.

This paper is organized as follows: Prior work about au-
tomatic text detection is discussed in Section 2; Section 3
describes our proposed method and presents in detail each
step of the algorithm; Section 4 gives implementation de-
tails; experimental results are presented in Section 5; and
finally, we conclude in Section 6.

2. Related work
Many different methods have been proposed for auto-

matic text detection. We will briefly summarize the two
main categories of these methods: connected component-
based and texture-analysis methods.

The first group of methods, connected component-based
methods, use the similarity of text pixels to group them to-
gether (e.g., [10, 13, 15, 19]). They search for homogeneous
properties such as color, edge directions, and strengths to
build connected components. These methods check which
connected components are words according to some crite-
ria.

Epshtein et al. [6] proposed an algorithm based on the
fact that the width of a stroke composing a letter remains
almost the same anywhere in the character. The image is
processed in order to compute the Stroke Width Transform
(SWT) which is a map that indicates per pixel the width
of the potential stroke at that location. Subsequently, pix-
els with similar stroke-width are grouped and the algorithm
detects text with the stroke-width-variance of a connected-
component, as text regions possess constant stroke-width.
This method provides very good results, as well as scale-
invariance, orientation-invariance and robustness. However,
the computational cost for a mobile device seems fairly high
as the stroke width needs to be computed for every pixel.

Sanketi et al. [17] proposed an algorithm based on blobs

formed with some connectivity rules. These blobs are then
grouped together to produce super-blobs. To find text re-
gions among those super-blobs, a series of tests consid-
ering several image features are applied to categorize the
super-blobs as text. The results obtained with this algo-
rithm were especially good with low-resolution and blurry
images. Nevertheless, the high number of image features
considered in the approach makes the algorithm cumber-
some to use.

Ma et al. [16] developed an algorithm for text detection
on a mobile device based on connected components and a
bank of feature-constraints. Given a connected component
and its boundig box, the set of constraints is used to select
letter candidates. Finally, the average height of the bound-
ing boxes is used to discard outliers. However, the set of
rules discard letters that are captured at a certain scale and
view angle, as the set of rules applied are defined to con-
straint certain shape and size.

The second group of methods, texture analysis meth-
ods (e.g., [11, 12, 14, 20]), leverage the textural properties
of text regions, making differentiating letters from back-
grounds possible. The image is thus segmented using tex-
ture.

Ferreira et al. [7] developed a text detector based on a
texture segmentation. The algorithm is based on Gabor
filters combined with edge information (Sobel response)
as features that consequently are clustered with K-Means.
However, the memory footprint can be high and clustering
can take time, making the approach not suitable for real-
time applications.

Our method is based on the main key ideas of both
groups to provide an efficient and robust algorithm. How-
ever, most of the steps in our method are part of the first
category. Thus, in order to offer a fast novel algorithm in
this category, the key idea of our method is to build only
one connected component per word (see Section 3). This
allows for efficiency in comparison with the other methods
of the first group, which create all the connected compo-
nents of an image.

3. Proposed text detection algorithm
The general structure of the algorithm is shown in Fig.

2. The algorithm works on a grayscale image for faster pro-
cessing time and can be separated into three main steps: (1)
Localize a first potential letter (zone of interest); (2) Verify
that a letter was found; (3) Find the rest of the word based
on the found letter.

3.1. Step 1: Finding a zone of interest

The aim of this step is to find a zone of interest that may
contain a letter. The proposed approach for locating the
zone of interest is based on existing methods [9, 15, 19]
because of their efficiency and good performance. These

Figure 2. Structure of our algorithm. The algorithm can be sepa-
rated in 3 main steps: Finding a zone of interest; Verifying if this
is really a letter; and finding the rest of the word.

Figure 3. Contour reconstruction process: Original picture (Left),
edge-map produced with Canny (Middle), reconstruction with di-
latation operator and a cross-shaped structuring element (Right).

methods leverage the high rate of edges contained in text
areas. Therefore, a potential letter can be found on an edge
map by building objects composed of closed contours that
later can be categorized as letter or non-letter. In the fol-
lowing paragraphs, we explain in more detail the building
blocks of this step.

Edge detection. Prior to detecting edges, a Gaussian
smoothing filter of size 5x5 pixels is applied to reduce noise
that could cause errors in further computation. The Canny
edge detector [1] is used for producing a binary map indi-
cating the presence per-pixel of every edge. This edge de-
tector is efficient and provides accurate results which makes
it suitable for our purpose.

Contour dilation. The original image is sometimes too
blurry for edges to be detected. Thus, some shapes, in-
cluding letters, could be overlooked by the edge detection
and not appear in the edge map (see Fig. 3). To ensure
the continuity of the contour, a preprocessing step is nec-
essary before starting the contour building. Avoiding this
step can produce an incorrect contour by the algorithm. For
reconnecting the edge pixels together, we use dilation, a bi-
nary morphological tool. For our implementation, a cross-

Figure 4. Structure of the first step of the algorithm.

shaped structuring element of pixel size 3 worked the best
for filling the holes in the contours.

Contour building. The algorithm starts scanning from
left to right and top to bottom to find an edge pixel in the bi-
nary map. When an edge pixel is found, the contour of the
object containing this pixel is built with an 8-connectivity
connected component algorithm. The 8-connectivity algo-
rithm [4] is a region-based segmentation algorithm which
checks the 8 pixel neighbors of a pixel and connects this
pixel with its similar neighbors.

Information about the bounding box containing the com-
puted contour, such as height, width, position of the cen-
troid, etc., is available as an outcome of this step.

3.2. Step 2: Verification of the zone of interest

The main intention of this step is to verify whether or
not the zone of interest actually contains a character. This
task is not straightforward, as the words contained on bill-
boards, road signs or books have different sizes or fonts
which makes learning precise shapes of letters a challenging
task. However, since signs are typically meant to be easily
readable, discriminating text regions from non-text regions
with geometric information should be possible.

A Support Vector Machine (SVM) and a set of image
features are adopted to accomplish the discriminating task.
SVMs are widely used in the literature (e.g., [12, 20]) and
are quite useful for binary categorization tasks. SVMs have
a strong mathematical foundation and provide a simple ge-
ometric explanation of their classification. Moreover, the
solutions found with SVMs are always the global minima
solutions [5], i.e., solutions with the best support that gen-
eralize well.

In order to select the best features to address this discrim-
ination task, we conducted experiments evaluating several

Figure 5. Structure of the second step of the algorithm.

combinations of image features. The most effective features
1 we found are the First-Order Moments (FOM) defined as
in equations 1 and 2; and Second-Order Moments (SOM)
normalized with the number of pixels on the contour (NB)
as defined in equations 3 and 4, where x, y are the coordi-
nates of the pixel in the clipped zone of interest and I(x, y)
denotes the intensity of the pixel:

FOM 1 =
∑
x

∑
y

x I(x, y) (1)

FOM 2 =
∑
x

∑
y

y I(x, y) (2)

SOM 1

NB
=

∑
x

∑
y

x2 I(x, y)

NB
(3)

SOM 2

NB
=

∑
x

∑
y

y2 I(x, y)

NB
(4)

3.3. Step 3: Finding the rest of the word

In order to robustly find the rest of the word given the po-
sition of the first letter, we propose to combine two features
that will provide information about the surrounding charac-
ters: image intensities and the edge map. These features
will determine when to stop scanning in the surrounding
areas, and therefore, to determine the spatial extent of the
bounding box.

3.3.1 Background and Foreground intensities

Given the first letter of the word or phrase to be detected,
the background and foreground intensities in the grayscale

1These features are easy and fast to compute and provide an acceptable
discriminating rate according to our observations.

Figure 6. Method to find the intensity of the background. A second
box is created and the mean of the intensity of the pixels on the
perimeter of the new box is associated to the background.

domain can be extracted. We can safely assume in most
cases that each word is contained in a homogeneous colored
background and the letters have approximately the same in-
tensity; we can then infer the intensity and find the remain-
ing letters. The K-Means algorithm with k = 2 is used
to find the two intensities. In order to know which inten-
sity corresponds to the letter, we create a second bounding
box with the same center as the first bounding box of the
zone of interest. The width and height of the new bounding
box are computed as follows: width2 = width + δw and
height2 = height + δh, where δh = δw = 2 pixels (see
Fig. 6). The pixels on the perimeter of that new box are
likely to be background elements, and therefore, the clos-
est intensity to the mean of those perimeter pixels is chosen
to be the intensity of the background. Consequently, the
remaining intensity is attributed to the letter.

3.3.2 Edge map

Edge pixels around the found letter are likely to be part of
the rest of the word because text regions present a high edge
density. Useful information to estimate the position of the
remaining letters is extracted from the adjacent edge pixels
of the zone of interest.

3.3.3 Scanning

In order to speed up the full word bounding box computa-
tion, we scan the image horizontally with 3 line segments.
A single line segment is positioned on top, middle and bot-
tom of the found character’s bounding box. Each segment
is then scanned on the left and right side of the zone of inter-
est considering a gap of size s on every side. The algorithm
looks for pixels with intensities similar to the letter’s inten-
sity along the segment. Edge pixels that are present in the
analyzed gap are considered simultaneously. In this manner
we guarantee that in fact we are likely to see pixels repre-
senting letters on the image. The size of the gap used in our
algorithm is calculated as follows: s = 1.1 ∗H , where H is
the height of the found letter. The size as a function of the
height allows us to consider the breach that exists between
two adjacent characters in a word. However, when such
breach is less than 1.1 ∗ H , the algorithm considers both

Figure 7. Horizontal and vertical scanning to find letter pixels (in-
tensity or edge pixels). Gaps of size s are analyzed between the
letters during the procedure.

Figure 8. Considering only information from edges (left) or inten-
sity (middle) can determine an incorrect bounding box. Combin-
ing both features produces a better bounding box (right).

adjacent words as a single word. The procedure is applied
until no edge pixels are detected or no similar intensity is
found in the analyzed gap of every line segment. As an out-
come of this procedure we obtain the width of the bounding
box.

To find the height boundaries, we scan pixels along hor-
izontal line segments with lengths equals to the computed
bounding box widths described earlier (see Fig. 7). We
scan these lines following the same pixel criteria of intensi-
ties and edges used earlier. The algorithm moves the lines
up and down until this criteria is fulfilled.

The combination of these two procedures computes a
rectangular bounding box that encloses the letters of a cer-
tain text in the analyzed image (see Fig. 8).

Scanning with three horizontal parallel line segments
tolerates a certain perspective distortion of the letters that
compose the word. However, the produced bounding box
computed with these procedures may be slightly larger
or smaller than the minimum bounding box due to noise
present in the image.

3.4. Post-detection processing

Once a word is found, the search for additional words in
the image continues until every pixel of the image not part
of a word bounding box has been scanned.

3.5. Additional step for video stream: Temporal
redundancy

An additional step is applied when our algorithm is used
on a video stream, which is the case in TranslatAR. In or-
der to keep track of stable text-regions and remove false
alarms as much as possible, we leverage the temporal infor-

Figure 9. Structure of the third step of the algorithm.

mation that we can obtain from the video stream. We are
interested in tracking these stable text regions. Since the
scene does not change much from frame to frame, assum-
ing that the frames on the video stream are generated at a
high frame rate, the stable regions repeat and the position
and area of the true-positives detected bounding boxes does
not vary much; therefore, false alarms will behave more un-
stably in this sense. The stability of these correct bounding
boxes allows the algorithm to remove a fair amount of false
positives.

The algorithm retains the center position and the area of
the detected bounding boxes on the first frame. On sub-
sequent frames, we re-detect the bounding boxes and we
match them with the previously seen boxes based on areas
and centroids. For every retained bounding box we incre-
ment a counter c if the bounding box matches a previously
seen region, and decremented if it is not seen. A bounding
box is considered to be stable if c > 1.

There are three different cases for matching that occur
when comparing two bounding boxes (see Fig. 10):

1. One of the bounding boxes contains the other one.

2. The two bounding boxes intersect.

3. The two bounding boxes do not intersect and neither
of them contains the other one.

Figure 10. Considered cases when comparing bounding boxes: In-
clusion (left), Intersection (middle), and Disjoint boxes (right).

Cases 1 and 2 are situations where the bounding boxes
in question can represent the same word. In order to know
which case correspond to two bounding boxes, the positions
of their upper left and lower right corners are compared.
Once two bounding boxes are considered to be potentially
the same word, further aspects are analyzed in order to de-
termine a match.

To determine a match for the first case 1 we evaluate
the ratio r between the smallest area and the biggest area.
A match is determined if r > 0.7. For the second case,
we evaluate the absolute value of the displacement of the
centers c1 and c2, i.e., δx = |cx1−cx2 | and δy = |cy1−cy2 |,
as well as the ratio of the areas used in the first case. The
method declares a match considering the following criteria:
δx < εx, δy < εy , and r > 0.7, where εx = 0.35 ∗ width,
εy = 0.35 ∗ height (the height and width correspond to the
smallest bounding box).

Subsequently, we average the centroids and areas of the
matching bounding boxes in order to keep track of the box
on the remaining frames.

4. Implementation details
The system was tested on a Nokia N900 smartphone

(first available in fall 2009) which possesses a TI OMAP
3430 SoC with a 600MHz ARM Cortex A8 CPU and runs
Maemo (Linux-based OS).

The automatic text detection algorithm was implemented
in C++ using the OpenCV 2.2 library. The different test
cases that evaluated the algorithm were implemented with
Qt libraries to measure the runtime and its accuracy.

We integrated our text detection algorithm into Trans-
latAR: We coupled the new text detection algorithm in the
pipeline used by TranslatAR, reusing therefore its compo-
nents (see [8] for more details).

5. Evaluation
In order to thoroughly evaluate the algorithm, different

experiments were carried out. We evaluated the text de-
tection algorithm and the integration of this method with
TranslatAR which uses Tesseract as OCR [18].

5.1. Text detection accuracy

We created our own dataset to test the algorithm in a
more realistic context, i.e., low-resolution, mobile camera,
and others. This dataset comprises 400 images, each con-
taining a single word from natural scene which follow the

assumptions made for this project (see section 1), and 400
non-text images.

In order to evaluate the performance of the proposed
method, we evaluated every outcome manually, and the out-
come was labeled as successful if all the letters of the word
were contained in the bounding box. The results of this ex-
periment are reported in Table 1.

Table 1. Text detection accuracy.

Words False Precision Recall f-score
Found Alarms
87% 41% 68% 87% 76%

The algorithm found the majority of the words; however,
it is also susceptible to a substantial rate of false alarms. By
analyzing the failures, both missing words and false alarms,
we concluded that the main problem occurs in the second
step (c.f . Section 3.2, verifying the zone of interest). The
SVM was the most common source of failure for the case
of false negatives, failing to detect words (see Table 2).

Table 2. Distribution of failure for the missed words.
1st step [%] 2nd step [%] 3rd step [%]

4.57 81.04 14.39

We observed that false alarms arise in images with high
edge densities, as the first step declares those regions as
zones of interest and therefore the second step declares them
as text regions. We noticed that the SVM with SOM/FOM
as features, tends to declare any symmetrical non-text re-
gion in an image as text (see Fig. 11).

5.2. Temporal Redundancy

We collected 50 videos of different texts from indoor and
outdoor natural scenes and conducted a quantitative visual
evaluation with and without the temporal redundancy. The
temporal redundancy enabled the application to reduce up
to 70% of the false alarms. However, the approach also
penalized the detection rate when the user imposed a sig-
nificant movement of the phone because the position of the
bounding box around the word changed significantly. Ap-
proximately 15% of the words were not found because of
the temporal redundancy.

5.3. Runtime

As TranslatAR requires a real-time text detection algo-
rithm, the faster the detector the more compelling the appli-
cation appears. The average runtime for an image of size
320x240 (size used in TranslatAR) is reported in Table 3.

The first step takes 58% of the total time. Nevertheless,
the algorithm runs fast on the mobile phone which makes
the approach a good asset for automatic text detection.

Figure 11. Words correctly detected (left) and failures (right).

Table 3. Mean runtime for an image of size 320 x 240 on the Nokia
N900. The experiment was conducted 20 times on 50 text images
and 50 non-text images.

Step Mean runtime [ms]
1st step 94.66

Smoothing, edge detection 32.52
and morphological operator

Zone of Interest 42.06
Building Contours 20.08

2nd step 38.22
Zone extraction and 27.66

binarization
Feature vector computation 7.06

SVM call 3.5
3rd step 26.28

Color blob detection 14.24
Edge detection 12.04

Total 159.16

Table 4. Testing the integration with TranslatAR. 100 images from
indoors and outdoors natural scenes were used for this experiment.

Words found Words read Correct
correctly translation

58 26 20

5.3.1 Implementation in TranslatAR

Some modifications to improve the ergonomics of Trans-
latAR were implemented during this project. To launch the
translation system, the user is required to point the phone
at the text and to momentarily be still. The system detects
a “stability” sensed via the accelerometers and triggers the
detection-translation procedure. However, the system can
become too sensitive to the user’s movements and can af-
fect the performance of the detection.

In order to evaluate the efficiency of the integration, 100
natural scene images (50 from indoors and 50 from out-
doors) were tested for translation.

The text detection algorithm found 58% of the words
in images with homogeneous background and with a high
contrast between letters and the background. However, the
sharpness of the input image was not very good in general
and the edge detection algorithm did not perform well.

The OCR system (Tesseract) recognized correctly 26%
of the entire dataset used which corresponds to 45% of the
correctly detected words. The translation component was
able to translate 20% of the words correctly detected. The
text detection, translation and texture rendering took about
2.9 sec; meanwhile the tracking system took about 238ms
per frame.

We determined some external causes that made the OCR
fail (see Fig. 12). First, noisy pixels contained in the
bounding box. Second, imprecision on the bounding box
edges: big bounding box containing spurious pixels or short
bounding box truncating letters.

Figure 12. Imprecise bounding boxes and OCR readings: There
are some noise pixels in the detected region - ”NOTI” (left); the
bounding box is too small - ”101/1” (middle); and the bounding
box is too big - ”El SALE” (right).

6. Conclusion
This paper presented an algorithm for automatic text de-

tection which makes it suitable for an augmented reality
translation system on a mobile phone. The non-optimized
algorithm takes on average around 160ms to run which
makes the algorithm suitable for interactive applications;

running the detector on the device avoids external factors
such as network latency, remote server-faults, and others.
The key idea of the proposed method to speed-up the text
detection is based on finding first a single character and
leveraging the information extracted from the detected char-
acter to find the remaining characters. We also presented an
approach that exploits the congruent temporal redundancy
of information on the live video stream to remove spurious
text regions. This redundancy enabled removal of 70% of
the false alarms generated in the detection stage.

According to our experimental results that quantify the
efficiency, performance, and integration of the translation
system, the algorithm was able to detect words with a pre-
cision of 68% and a recall of 87% in our dataset devised for
the TranslatAR context.

Our experiments showed that the features used in con-
junction with the SVM to categorize a candidate region as
text are not so efficient and generated false alarms when an
image presented a high density of edges. Therefore, a more
extensive experiment should be devised to determine better
features. A potential feature that should be considered is the
stroke-width of the characters, as it allowed a good text de-
tection rate in a recent work [6], if it can be made efficient
enough for use in an interactive application.

Acknowledgments: The Nokia Research Center Palo
Alto provided partial support for this research. We would
like to thank Daniel Vaquero for his help. M. Petter would
like to specially thank Francesco Mondada for his official
supervising during this research. V. Fragoso would like
to thank UC MEXUS-CONACYT (Fellowship 212913) for
the funding. This work was done while M. Petter was at
UCSB Four Eyes Lab.

References
[1] J. Canny. A computational approach to edge detection. IEEE

Trans. Pattern Anal. Mach. Intell., 8:679–698, Nov. 1986. 3
[2] D. Chen, J.-M. Odobez, and H. Bourlard. Text detection and

recognition in images and video frames. Pattern Recogni-
tion, 37(3):595 – 608, 2004. 1

[3] X. Chen and A. L. Yuille. Adaboost learning for detecting
and reading text in city scenes. In IEEE Conf. on Computer
Vision and Pattern Recognition, 2004. 1

[4] C.-C. Cheng, G.-J. Peng, and W.-L. Hwang. Subband
weighting with pixel connectivity for 3-d wavelet coding.
IEEE Trans. on Image Process., 18(1):52–62, Jan. 2009. 3

[5] N. Cristianini and J. Shawe-taylor. An introduction to sup-
port vector machines and other kernel-based learning meth-
ods. Cambridge Univ. Press, 2000. 3

[6] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural
scenes with stroke width transform. In IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR), pages 2963–
2970, June 2010. 2, 8

[7] S. Ferreira, V. Garin, and B. Gosselin. A text detection tech-
nique applied in the framework of a mobile camera-based
application. In Proc. of Camera-based Document Analysis
and Recognition (CBDAR), Seoul, Korea, 2005. 2

[8] V. Fragoso, S. Gauglitz, S. Zamora, J. Kleban, and M. Turk.
Translatar: A mobile augmented reality translator. In IEEE
Wksp. on Applications of Computer Vision (WACV), pages
497 –502, Jan. 2011. 1, 6

[9] J. Gao and J. Yang. An adaptive algorithm for text detection
from natural scenes. In IEEE Conf. on Computer Vision and
Pattern Recognition, pages 84–89, 2001. 2

[10] A. Jain and B. Yu. Automatic text location in images and
video frames. In Proc. Fourteenth Intl. Conf. on Pattern
Recognition, volume 2, pages 1497–1499, Aug 1998. 2

[11] K. C. Kim, H. R. Byun, Y. J. Song, Y. woo Choi, S. Y. Chi,
K. K. Kim, and Y. K. Chung. Scene text extraction in natural
scene images using hierarchical feature combining and ver-
ification. In Intl. Conf. on Pattern Recognition, pages 679–
682, 2004. 2

[12] C. W. Lee, K. Jung, and H. J. Kim. Automatic text detec-
tion and removal in video sequences. Pattern Recogn. Lett.,
24:2607–2623, November 2003. 1, 2, 3

[13] C. Li, X. Ding, and Y. Wu. Automatic text location in nat-
ural scene images. In Proc. Sixth Intl. Conf. on Document
Analysis and Recognition, pages 1069 –1073, 2001. 2

[14] R. Lienhart and A. Wernicke. Localizing and segmenting
text in images and videos. IEEE Trans. on Circuits and Sys-
tems for Video Technology, 12(4):256 –268, Apr 2002. 2

[15] Y. Liu, S. Goto, and T. Ikenaga. A contour-based robust
algorithm for text detection in color images. IEICE - Trans.
Inf. Syst., E89-D:1221–1230, March 2006. 2

[16] D. Ma, Q. Lin, and T. Zhang. Mobile camera based text
detection and translation, 2011. 2

[17] P. Sanketi, H. Shen, and J. Coughlan. Localizing blurry and
low-resolution text in natural images. In IEEE Wksp. on Ap-
plications of Computer Vision (WACV), pages 503 –510, Jan.
2011. 1, 2

[18] R. Smith. An overview of the tesseract ocr engine. In Pro-
ceedings of the Ninth Intl. Conf. on Document Analysis and
Recognition - Volume 02, pages 629–633, Washington, DC,
USA, 2007. IEEE Computer Society. 6

[19] Q. Ye, W. Gao, W. Wang, and W. Zeng. A robust text detec-
tion algorithm in images and video frames. In Proc. Fourth
Intl. Conf. on Information, Communications and Signal Pro-
cessing and Fourth Pacific-Rim Conf. on Multimedia, vol-
ume 2, pages 802 – 806 vol.2, Dec. 2003. 2

[20] Q. Ye, Q. Huang, W. Gao, and D. Zhao. Fast and robust
text detection in images and video frames. Image and Vision
Computing, 23:565–576, 2005. 2, 3

