
LOCATING BINARY FEATURES FOR KEYPOINT RECOGNITION USING
NONCOOPERATIVE GAMES ∗

Victor Fragoso Matthew Turk João Hespanha

University of California, Santa Barbara
{vfragoso@cs, mturk@cs, hespanha@ece.}ucsb.edu

ABSTRACT
Many applications in computer vision rely on determining the

correspondence between two images that share an overlapping re-
gion. One way to establish this correspondence is by matching bi-
nary keypoint descriptors from both images. Although, these de-
scriptors are efficiently computed with bits produced by an arrange-
ment of binary features (pattern), their matching performance falls
short in comparison with other more elaborated descriptors such as
SIFT. We present an approach based on noncooperative game the-
ory for computing the locations of every binary feature in a pattern,
improving the performance of binary-feature-based matchers. We
propose a simultaneous two-player zero-sum game in which a max-
imizer wants to increase a payoff by selecting the possible locations
for the features; a minimizer wants to decrease the payoff by se-
lecting a pair of keypoints to confuse the maximizer; and the payoff
matrix is computed from the pixel intensities across the pixel neigh-
borhood of the keypoints. We use the best locations from the ob-
tained maximizer’s optimal policy for locating every binary feature
in the pattern. Our evaluation of this approach coupled with Ferns
shows an improvement in matching keypoints, in particular those
with similar texture. Moreover, our approach improves the matching
performance when fewer bits are required.

1. INTRODUCTION

Determining the correspondence between two images that share an
overlapping region is an important task in computer vision. Many
applications rely on this correspondence, e.g., image stitching [1],
tracking by detection [2], and others.

One way to establish this correspondence is by matching key-
points on both images, where every keypoint is represented by a de-
scriptor that captures information of the keypoint’s surrounding pixel
neighborhood (patch). A keypoint then is matched by determining
the closest or similar keypoint using their descriptors.

Many applications that demand real-time processing, e.g., [3,
4], require a fast keypoint description and matching. SIFT [5] has
shown a great performance in describing keypoints for matching,
however its computational cost is high. To alleviate this cost, Lepetit
et al. [6] proposed the use of binary features

f(I, p1, p2) =

{
1 if I(p1) > I(p2)
0 otherwise (1)

where p1 and p2 are two pixel locations, and I(p1) and I(p2) are
their pixel intensities. We can efficiently describe and match an im-
age patch by concatenating the bits produced by several binary fea-
tures in a pattern [6, 7].

Ideally, a unique binary descriptor per patch is desired, as it will
guarantee a low matching error rate. Although these features are

∗THIS IS A PREPRINT VERSION PUBLISHED BY THE AUTHORS.

easy to compute and match, they cannot capture enough discrim-
inative information for matching keypoints accurately, and we are
interested in improving them.

One way to increase their performance is to select the best lo-
cations of every binary feature in the pattern for capturing more dis-
criminative information. In other words, to make the matching more
accurate, we need to select p1 and p2 of every feature in the pattern
to produce disjoint keypoint descriptions.

Our problem of selecting the best pixel locations for the pattern
can be formulated as an optimization problem. In particular, the best
pixel locations can be seen as an optimal game strategy for a player
that wants to recognize keypoints given their image patches. There-
fore, we can use the mathematical tools that game theory provides to
find such optimal strategy.

In this work, we present an approach based on noncooperative
games for finding the locations of every binary feature used in a
pattern for keypoint recognition. We designed a game that enforces
the use of informative pixel pairs in a pattern. We show that the
feature locations found improve the recognition of keypoints across
certain image distortions.

2. RELATED WORK

Recent literature shows three different manners of locating binary
features in a pattern used by a keypoint matcher: randomly, heuris-
tically, and generatively. The available locations for the features are
constrained by the size of the patch and the number of bits to use,
i.e., the number of binary features in the pattern.

Lepetit et al. [6] and Ozuysal et al. [7] used a pattern containing
binary features randomly located. Both approaches train a classifier
that learns to recognize keypoints by using the bits produced after
evaluating the pattern with the training patches. Generating the pat-
tern randomly is easy and fast. However, the pattern does not guar-
antee an arrangement of features that capture the most discriminative
information.

Calonder et al. [8] presented experiments that evaluated several
patterns formed heuristically. The best pattern that they found was
produced by locating the features following an isotropic Gaussian
distribution. Their pattern is also easy and fast to generate. However,
the paper did not justify the nature of such pattern, leaving questions
open about their optimality.

Leutenegger et al. [9] presented a radial-symmetrical pattern.
The pattern has spaced single pixel locations that are on concen-
tric circles centered on the keypoint. The locations used are deter-
mined by computing those pixel pairs whose distance is less than
a threshold. Nonetheless, Leutenegger and colleagues did not pro-
vide a derivation of the constraints that determine the topology of
the pattern.

Rublee et al. [10] presented a methodology that learns the best
pixel locations that present high variability and means close to 0.5

across a large training set. However, the authors used those locations
as the optimal pattern for any keypoint matching problem. This im-
plies a risk of a bad generalization that can decrease the matching
performance. These motivated us to create a different method, based
on noncooperative games, to compute an optimal pattern.

3. THE GAME

3.1. Review of Zero-Sum matrix games
In these games two players confront each other. Each player pos-
sesses a finite set of actions or an action space Γ. The outcome of
a game is quantified by a function that takes in the actions played.
This function can be represented by a matrix A = [aij], where the
i-th row corresponds to the i-th action taken by one player, and the
j-th column corresponds to the j-th action played by the opponent.

Each player in the game has an objective: one player wants
to minimize the outcome by selecting rows, whereas the opponent
wants to maximize it by selecting columns. The game can be played
simultaneously which means that each player decides which action
to play without knowing the other player’s action.

A mixed policy is a probability distribution over the actions of
a player, describing a game strategy that a player follows, ideally,
according to his objective. It is assumed that both players play inde-
pendently. Therefore, we can compute the expected outcome of the
game

J = yTAz =

|Γ1|∑
i=1

|Γ2|∑
j=1

aijyizj (2)

where yi is the probability that the minimizer selects action i and zj
is the probability that the maximizer selects action j. A pure policy
is a game strategy that suggests to execute a single action k at each
step. Therefore, a pure policy can be described with a mixed policy
by indicating to perform action k with probability of 1.

Mixed saddle-point equilibrium policies (y?,z?) determine
“optimal” strategies yielding on average a good course for both
players throughout the game. A mixed saddle-point equilibrium is
achieved when both players play optimally, and any deviation from
the optimal strategy brings a worse expected outcome: the outcome
increases when the minimizer plays with a non optimal strategy
y, and it decreases when the maximizer plays with a non optimal
strategy z. This can be stated more formally as follows:

y?TAz ≤ y?TAz? ≤ yTAz? (3)

Therefore, we are interested in computing mixed saddle-point equi-
librium policies for our problem, which can be found by solving
appropriate linear programs [11].

3.2. Locating Binary Features
To guarantee a better keypoint recognition rate we must create pat-
terns that produce disjoint binary descriptors given a set of patches to
describe, i.e., produce a unique descriptor per patch as much as pos-
sible. Hence, we must analyze every patch in order to find the best
locations for every binary feature in the pattern. An ideal pair of
pixels for locating a binary feature present a high intensity variation
across all patches. This intensity variation implies a high likelihood
of producing disjoint descriptors when we concatenate the generated
bits.

Therefore, we can define a simultaneous zero-sum matrix game
in which a player wants to maximize his payoff by selecting pixel
pairs that present high variation across patches, while the opponent
wants to reduce such a payoff by selecting patch pairs. Hence, we

Fig. 1. Payoff matrix computation. The entry aij is computed using
the actions (Im, In)i and (pr, ps)j . A high payoff is returned when
the two pixel locations provide a high variation across patches Im
and In, and a low payoff is returned when the variation is low.

need to design a payoff function that returns a high payoff if a pixel
pair has high intensity variation across patches, and a low payoff if
the variation is low. We are interested in obtaining the optimal policy
for the maximizer as it determines the pixel pairs that we can use in
a pattern for improving the keypoint recognition rate.

We define the structure of this game more formally by defining
the action spaces and the payoff function. The minimizer has the
2-combination set of the patches set I as his action space, i.e., a set
formed of pairwise combinations of patches

Γ1 =

(
I
2

)
(4)

The maximizer has the 2-combination set of the pixel locations set
P as his action space, i.e., a set formed of pairwise combinations of
pixel locations

Γ2 =

(
P
2

)
(5)

The payoff matrix therefore is built as follows

aij = |D1(i, j)−D2(i, j)|
= |Iim(pjr)− Iim(pjs)− Iin(pjr) + Iin(pjs)| (6)

where (Im, In)i ∈ Γ1 and (pr, ps)j ∈ Γ2. The terms D1(i, j) and
D2(i, j) evaluate the difference of the pixel intensities at a particu-
lar patch, and by subtracting them, we measure the variation across
patches (see Fig. 1). This payoff function enforces the desired ob-
jectives: the maximizer will select pixels that are different within the
patch and vary across patches.

We are interested in computing the best strategy for the maxi-
mizer, i.e., z?, a mixed saddle-point equilibrium policy. Our pri-
mary goal is to obtain the best feature locations from the solution.
After solving the game, we sort the elements in the computed policy
using their probabilities, and pick the required number of locations.
We generate the pattern randomly when no solution or a pure policy,
i.e., a single location with high variation, is found.

The players in the described game can be interpreted in a very
intuitive manner. The minimizer can be pictured as an agent that
controls the nature of the patches in order to confuse the opponent,
while the maximizer can be pictured as an agent that wants to se-
lect the pixel pairs carefully to recognize the keypoints better. The
mixed policies found to this game assume that each participant plays
rationally, which is not entirely true in the minimizer case.

Fig. 2. The keypoint patches are splitted into chunks, and they are
introduced to a game solver. After finding the mixed policy for each
chunk, a selector extracts the best locations for the features. Subse-
quently, the pattern is formed.

Fig. 3. Each game produces a bit region specialized in recognizing
a subset of the keypoints. We concatenate the L solutions of each
game to form the final arrangement of n bits. In this figure, only 3
bits were computed per game.

3.2.1. Computational issues and their solutions

Computing the action spaces Γ1 and Γ2 is computationally in-
tractable as the memory required to store them can be high. There-
fore, by reducing the sets P and I we can produce action spaces
with a lower cardinality, and that are therefore memory efficient.

We reduce the memory complexity by partitioning the problem
into subproblems: we can form a pattern by coupling the solutions
of several games, whose solutions provide the best binary features
specialized in recognizing a subset of the patches (see Fig.2 for an
overview). We partition the set of patches into L subsets, i.e., I =
∪L

l=1Il, and we formulate L games, each generating a pattern for
a specific subset Il. Hence, Γ1 is now defined over the pixel pairs
constrained by Il for each game. To reduce Γ2 we add a distance
constraint on the pixel pairs for each game, i.e.,

||pr − ps|| ≤ ε (7)

where ε is a threshold in pixels.
The solutions to these new games are still valid, because the

arrangements of the binary features are bit concatenations. The final
concatenation of bits therefore contains sections that are specialized
in recognizing a subset of the keypoints (see Fig. 3). Furthermore,
the proposed architecture (see Fig. 2) allows to solve the games and
select the features in parallel which can speed up the process.

Mixed saddle-point equilibrium policies usually are sparse.
However, in order to fulfill the fixed number of bits required for
each game, we trim the found policy by ranking the actions with its
probabilities and select the best actions accordingly. When a pure
policy or no solution is found, then the best strategy is to generate
the locations randomly.

4. EXPERIMENTAL RESULTS

We used the ferns-matcher [7] for evaluating our approach. This
matcher trains a classifier that learns to recognize keypoints after
observing the generated binary codes produced by using a randomly
computed pattern and a training set of patches. We integrated our
approach to generate a pattern before training the classifier, and we

Fig. 4. Graffiti dataset (top row) and Wall dataset (bottom row).
Left column holds the reference images while right column holds a
distorted image. These datasets contain five images of the reference
image varying the viewpoint.

compared its performance with another classifier trained with a ran-
domly generated pattern.

The ferns-matcher divides the generated binary codes into s
chunks of bits (fern) for training, and there are k ferns that produce
n = k × s bits total. We adapted the solutions discussed in Sec.
3.2.1 as follows: a single game is solved to find the feature locations
per fern, and Γ1 is formed after partitioning the training keypoint
set in L = k subsets and Γ2 is formed after adding the distance
constraint, eq. (7) with ε = 5.

The experiments were implemented in C++ with the use of the
libraries OpenCV 2.3 for vision tasks and GLPK 4.47 for solving the
linear programs that find the mixed saddle-point equilibrium policy.
We extended the OpenCV class that matches keypoints using ferns
by including our approach to find the pattern before training.

We used the Wall and Graffiti datasets (see Fig. 4) from the
widely used Affine Covariant Features dataset [12] for our experi-
ments. These two datasets contain a reference image and five images
that show different viewpoints of the same scene. The used datasets
provide the transformations (homographies) that map the reference
image to the distorted images.

To detect keypoints we used the OpenCV implementation of the
ORB keypoint detector [10]. We matched the 500 keypoints with
several matchers and determined a successful match when ||xD −
HxR|| < δ, where xD is a keypoint detected on a distorted image;
H is the homography; and xR is the reference keypoint. We used
δ = 5 pixels to tolerate the pixel error implied in the transformation,
and the default patch size from OpenCV (31× 31 pixels).

Fig. 4 shows a performance comparison between GTFL-Ferns,
a ferns-matcher coupled with our approach, and a regular ferns-
matcher with different bit sizes (450 = 50fern × 9bits/fern and
256 = 32fern × 8bits/fern bits). The x-axis shows the image in-
dices ranging from 1 to 6, where image 1 is the reference image
(used for training) and the remaining images are sorted denoting an
increase in the viewpoint. The y-axis shows the fraction of keypoints
correctly matched.

We can observe in Fig. 5(a) that GTFL-Ferns performed com-
petitively when 450 bits were used, and better when 256 bits were
used. We can notice from 5(b) an improvement for 450 and 256
bits when the patches to recognize present a similar texture. Further-
more, our approach improved the recognition considerably even on
the training image (see Image 1 in Fig. 4), which confirms the gen-
eration of more disjoint binary descriptors. Moreover, we can see an
overall gain in the tolerance of an increasing viewpoint angle even
though we never accounted for that distortion.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Image

R
e
c
o
g
n
it
io

n
 R

a
te

 (
In

lie
rs

)

Matching Performance (Graffiti Dataset)

GTFL-Ferns 450 bits
Ferns 450 bits
GTFL-Ferns 256 bits
Ferns 256 bits

(a)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Image

R
e
c
o
g
n
it
io

n
 R

a
te

 (
In

lie
rs

)

Matching Performance (Wall Dataset)

GTFL-Ferns 450 bits
Ferns 450 bits
GTFL-Ferns 256 bits
Ferns 256 bits

(b)

Fig. 5. Performance evaluation in matching keypoints with increasing viewpoint using Ferns and GTFL-Ferns. Although the computed
mixed policy is not fully applied (see 3.2.1), GTFL-Ferns presents an overall improvement, in particular when the patches have a very similar
texture.

5. CONCLUSIONS AND FUTURE WORK

We presented a simultaneous zero-sum matrix game that models an
interaction between the nature of the image patches enclosing a key-
point and a player that wants to find good locations for computing
binary features. The game, which is built and solved automatically,
is designed for computing binary feature locations that capture more
discriminative information for better recognizing keypoints. We an-
alyzed the computational issues and described the solutions that this
approach presents. Moreover, our proposed solution can be paral-
lelized for computing the binary feature locations faster.

We showed an evaluation of our approach coupled with a ferns-
matcher [7]. Our experiments showed an improvement on the recog-
nition rate (keypoints correctly matched), and specially an improve-
ment when fewer bits are required to recognize keypoints and when
the patches to describe present a similar texture. In addition, our re-
sults also indicate that there is a gain in the tolerance of an increasing
viewpoint angle even though we never accounted for that distortion.

Although, binary features are simple and efficient to match,
these features have a lower capacity of capturing representative in-
formation for recognizing keypoints accurately. A more significant
improvement can be achieved if more information is included in the
game, e.g., patch appearance after rotation and scale changes.

We plan to extend our evaluation of our algorithm on patches
that are previously rectified using the main keypoint orientation, and
compare the results with recent approaches that do not train a clas-
sifier and use the binary code produced by the pattern itself, such as
ORB [10] and BRISK [9].

Acknowledgments: Victor Fragoso would like to thank UC
MEXUS-CONACYT for the funding (Fellowship 212913).

6. REFERENCES

[1] M. Brown, R. Szeliski, and S. Winder, “Multi-image matching using
multi-scale oriented patches,” in Proc. IEEE Conf. on Computer Vision
and Pattern Recognition, 2005, vol. 1, pp. 510–517.

[2] M. Ozuysal, V. Lepetit, F. Fleuret, and P. Fua, “Feature harvesting
for tracking-by-detection,” in European Conf. on Computer Vision, pp.
592–605. Springer Berlin / Heidelberg, 2006.

[3] G. Klein and D. Murray, “Parallel tracking and mapping on a cam-
era phone,” in Proc. IEEE Intl. Symposium on Mixed and Augmented
Reality, Oct. 2009, pp. 83–86.

[4] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg, “Real-time
panoramic mapping and tracking on mobile phones,” in Proc. IEEE
Virtual Reality Conference, March 2010, pp. 211–218.

[5] David G. Lowe, “Distinctive image features from scale-invariant key-
points,” Intl. Journal of Computer Vision, vol. 60, no. 2, pp. 91, Nov.
2004.

[6] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time key-
point recognition,” in Proc. IEEE Computer Vision and Pattern Recog-
nition, 2005, vol. 2, pp. 775–781.

[7] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recog-
nition using random ferns,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, pp. 448–461, March 2010.

[8] M. Calonder, V. Lepetit, and P. Fua, “Brief: Binary robust indepen-
dent elementary features,” in European Conf. on Computer Vision, vol.
6314, pp. 778–792. Springer Berlin / Heidelberg, 2010.

[9] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invari-
ant scalable keypoints,” in Proc. IEEE Intl. Conf. on Computer Vision,
2011.

[10] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in Proc. IEEE Intl. Conf. on Computer Vision,
2011.

[11] João P. Hespanha, “An introductory course in noncooperative game the-
ory,” Available at http://www.ece.ucsb.edu/˜hespanha/
published, 2011.

[12] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors,” Intl. Journal of Computer Vision, vol. 60, pp. 63–86, Octo-
ber 2004.

