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Abstract

We present a mobile augmented reality (AR) translation
system, using a smartphone’s camera and touchscreen, that
requires the user to simply tap on the word of interest once
in order to produce a translation, presented as an AR over-
lay. The translation seamlessly replaces the original text
in the live camera stream, matching background and fore-
ground colors estimated from the source images. For this
purpose, we developed an efficient algorithm for accurately
detecting the location and orientation of the text in a live
camera stream that is robust to perspective distortion, and
we combine it with OCR and a text-to-text translation en-
gine. Our experimental results, using the ICDAR 2003
dataset and our own set of video sequences, quantify the
accuracy of our detection and analyze the sources of failure
among the system’s components. With the OCR and trans-
lation running in a background thread, the system runs at
26 fps on a current generation smartphone (Nokia N900)
and offers a particularly easy-to-use and simple method for
translation, especially in situations in which typing or cor-
rect pronunciation (for systems with speech input) is cum-
bersome or impossible.

1. Introduction
Written text is one of the most common methods for con-

veying information in our daily lives. However, when writ-
ten text is encountered in a language unfamiliar to an in-
dividual, the information cannot be conveyed. To alleviate
this problem, many aides for translation have been devised,
from simple dictionaries to electronic devices that simplify
the translation process in one way or another. These de-
vices can be classified by the way in which the text is en-
tered (e.g., manually searching through an alphabetic index,
typed in via keyboard, speech input) as well as how the
translation is presented (e.g., as text in a book, text on a
screen, voice output).

Using a smartphone with touchscreen and camera as the
physical device, we present a system for automatic transla-
tion of visual text that has an efficient and easy-to-use input

Figure 1. TranslatAR in operation: the user detects a word he/she
wishes to translate and taps on it (top left). The system automat-
ically detects the extent of the word, extracts the letters via OCR,
and translates the text. The translation is then presented as live AR
overlay (top right). Bottom row: TranslatAR used in two other sit-
uations.

and a natural and compelling form of presentation. The use
of our system, dubbed TranslatAR, is shown in Fig. 1: the
user simply taps on a word he/she wishes to translate, the
system automatically detects, extracts, tracks and translates
the text, and finally presents the translation as a live Aug-
mented Reality (AR) overlay.

In contrast to previously proposed systems, almost all of
the processing is done on the mobile device itself, provid-
ing immediate feedback. Only the text-to-text translation
uses an online translation service in the current implemen-
tation, but it is conceptually straightforward to integrate an
appropriate dictionary on the device itself.

The remainder of this paper is structured as follows: Sec-
tion 2 gives an overview of relevant related work; Section 3
provides details of the algorithms used in our system; Sec-
tion 4 gives implementation details; Section 5 presents ex-
perimental results; finally, we conclude in Section 6.



2. Related Work
Computer vision-based translation. Systems for semi-
automatic and automatic vision-based translation have pre-
viously been proposed, e.g., [7, 13, 17, 18]. However, all
of them are based on a client-server architecture to offload
expensive operations (detection, extraction and translation)
and hence cannot operate without network connection or
provide immediate feedback. The translation is provided
either in the form of speech synthesis [18] or a simple text
display on the screen1.

Similar systems are now available as commercial appli-
cations, such as Google Goggles2 (albeit with manual text
detection) and ABBYY Fototranslate3.

While these systems are similar to ours, our system is
able to execute all of the image processing tasks on the mo-
bile device while tracking the text in real-time, and it offers
a particularly easy-to-use (single click) and compelling (AR
overlay of the result) user interface.

Text detection in natural scenes. Localizing and recog-
nizing text in video streams has been researched extensively
for tasks such as information retrieval and license plate
identification (e.g., [8]).

In the ICDAR 2005 competition for automatic text detec-
tion [12], the algorithm by Becker (unpublished) performed
best, but it is rather expensive and hence not suitable for live
translation on a mobile device. Chen and Yuille [4]’s algo-
rithm is significantly faster and performed almost as good.
Very recently, Epshtein et al. [6] presented a detector based
on the “stroke width transform” and showed very promising
results on the ICDAR dataset.

Several systems have been devised for mobile platforms
in particular, but they expect the word to be in the center of
the image [14] and/or do not handle perspective distortion
[5, 11].

Tracking & AR on mobile phones. Visual tracking and
AR without markers in real-time have successfully been
demonstrated on mobile phones, both with known natural
feature targets [16] and without [9]. While the above sys-
tems detect and then track keypoints, tracking may also be
done via image alignment-based techniques [1, 3].

3. Overview of the System
The system’s architecture, shown in Fig. 2, was designed

such that all expensive operations run in a background
thread, while the system maintains interactive framerates
for tracking and augmentation. The individual components
are described in the following sections.

1Note that [7] mentions live AR feedback as future work.
2http://www.google.com/mobile/goggles
3http://www.abbyy.com/fototranslate/

Figure 2. Architecture of TranslatAR. Initialization and per-frame
operations run in the main thread, while the rest runs in the back-
ground.
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Figure 3. Text detection in operation. First, the vertical extent of
the text is determined (a), then – using the assumed text height –
the horizontal extent (b). A constrained and modified Hough
Transform is used to determine the exact baseline and orientation
(c), and finally, the area is expanded to account for ascenders and
descenders (d).

3.1. Text detection

Given a point c onto which the user tapped, the system
first finds the bounding box around the word, then the exact
location and orientation of the text within.

3.1.1 Bounding box

To find approximate upper and lower boundaries of the text,
first the image gradients Ix and Iy are computed. A short
horizontal line segment sh around the input point c is then
moved vertically upwards and downwards, respectively, un-
til the following criterion is met (for δy consecutive scan-
lines):

max
(x,y)∈sh

|Ix(x, y)| < ε (1)



that is, until sh does not cross any vertical edges. The ex-
ample in Fig. 3(a) shows the final upper and lower location
of sh.

The same idea is applied to compute the left and right
boundaries, sweeping a vertical line segment sv over Iy .
We make use of the knowledge obtained in the first step
by making the length of sv relative to the distance between
upper and lower sh (i.e., the assumed text height). Here, the
required width of the “gap” δx is set slightly larger so that
the algorithm does not stop between letters. The result is
shown in Fig. 3(b). Values for ε, δx, δy and the lengths of
sh and sv were obtained experimentally (cf. Section 5).

This coarse region of interest, namely, the bounding box,
is sufficient to initialize the tracker (cf. Section 3.3). A sep-
arate background thread is started in which all remaining
operations for text extraction and translation are executed
while the foreground system can capture, track and display
live frames.

Though fast and simple, this approach is able to detect an
approximate bounding box in many conditions. However, it
is susceptible to fail for very non-uniform backgrounds (cf.
evaluations in Section 5).

3.1.2 Location & orientation refinement

To detect the exact location and orientation of the upper and
lower “baselines” of the text, we apply a constrained and
modified Hough Transform as follows: Firstly, only pix-
els within the bounding box are considered, and only lines
that cross the vertical line through c at an angle of ±15◦

are taken into account. This reduces the computational cost
considerably, ensures that only “reasonable” lines are taken
as candidates for baselines, and leverages the (we think rea-
sonable) assumption/limitation that the user will hold the
phone roughly parallel to the text.

Secondly, we optimize the voting scheme for the task
of finding text baselines as follows: horizontal edges (i.e.,
in Iy) vote for lines passing through the respective point
(vote with positive weight), while vertical edges (in Ix) vote
against them (vote with negative weight). This is designed
so that the ideal line goes along horizontal edges while cut-
ting few or no vertical edges. The result may be seen in
Fig. 3(c). Finally, lines are moved vertically until no edge
intersections are detected to account for ascenders and de-
scenders (Fig. 3(d)).

The resulting quadrilateral region of interest is warped
into a rectangle, correcting any perspective distortion and
showing the text as if seen orthogonally.

3.2. Text extraction, Recognition and Translation

The warped image produced as described above is used
to extract background and foreground color, as well as to
“read” the word via OCR.

Figure 4. Two detected and automatically rectified text areas with
estimated foreground and background color on their right side.

3.2.1 Foreground and background color estimation

We assume that the letters have a single, constant color with
reasonable color contrast to the background, i.e., that there
are two dominant clusters in color space that represent fore-
ground and background. They are extracted from the sub-
sampled rectified image using K-Means [2] with k = 2. To
differentiate between foreground and background, we re-
trieve a few labeled samples along the left and right borders
and assume that the background color is the one with the
majority of the collected labels (this is justified as our de-
tection algorithm automatically includes a small margin, cf.
Section 3.1.2).

This approach estimates both colors very accurately and
fast when the assumptions are met. It will fail for very non-
uniform background when there are significant speculari-
ties on the letters. However, in such cases, one of the other
components (detection, OCR) is likely to fail, and though
improving the user experience, the color estimation is not
crucial to the operation.

3.2.2 OCR

With the rectified image of the word, we rely on a standard
OCR system for extraction and recognition of the letters.
We used Tesseract [15], as it is freely available and was
easy to integrate. As bad text detection frequently causes
the OCR to return spurious, non-alphanumeric characters
(such as punctuation marks), we calculate the ratio of al-
phanumeric characters to all characters in the string as a
rough indicator of successful extraction.

3.2.3 Dictionary lookup

The following (optional) step was motivated by preliminary
tests with the OCR which showed that single letters were
frequently misrecognized (cf. Fig. 6 in the evaluation).

With a string returned from the OCR, we search through
a dictionary of valid words to identify the nearest neighbor
with respect to the Levenshtein distance [10]. The Leven-
shtein distance to the found string is computed for each dic-
tionary word within ±2 of the length of the found string,
and the word with the smallest distance is taken as replace-
ment for the original string returned by the OCR.

This implementation clearly does not scale to large dic-
tionaries and is only meant as proof-of-concept add-on. Its
benefit will be evaluated in Section 5.



3.2.4 Translation

With the extracted string, we use Google Translate4, an ex-
isting free online translation service, to do the actual text-
to-text translation. The input language is detected automat-
ically by Google Translate, and the desired output language
can be selected by the user in our GUI.

3.3. Visual Tracking

Visual tracking enables the system to keep track of the
word of interest in the live video stream and to present the
translation in a live, AR-style overlay. Fortunately, several
circumstances make tracking in our application easier than
it is in the general case: (1) we may assume that the text
is displayed on a near-to-planar surface, (2) as the region
of interest consists of text, it is automatically well-textured
and contains features with high contrast, which is important
for tracking, (3) we are only interested in tracking over
short periods of time (as long as it takes the system to obtain
the translation + the user to read it), (4) we can assume a
“cooperative” user who will not move the phone jerkily.

We implemented our tracking system based on ESM [3],
in which an image region is tracked by iteratively minimiz-
ing the difference between a reference frame (the template)
and the current frame. Though costly for large intra-frame
movements and/or large image templates, in our case (due
to the above constraints), it provides sufficiently fast and
robust tracking even for a relatively small template.

3.4. AR Overlay

Based on the transformation computed by the tracker,
a graphical augmentation is rendered onto the live video
screen; first a placeholder (“please wait...”) is displayed
while the text is being translated, and then, as soon it be-
comes available, the translation itself.

4. Implementation Details
We implemented our system on the Nokia N900, which

is based on a TI OMAP 3430 SoC with a 600 MHz ARM
Cortex A8 CPU and runs the Linux-based operating system
Maemo. Our code was developed in C++, using OpenCV
and libCVD for computer vision tasks (processing frames of
size 320x240), GStreamer for frame capture, and Qt for the
GUI, which consists of a large viewfinder and a few buttons
for configuration (e.g., language selection).

The ESM tracker was implemented from scratch using
libCVD. It uses a downsampled grayscale version of the
warped rectangular text bounding box as a template and the
respective previous frame’s homography as initial estimate
for the 8 degree-of-freedom alignment.

4http://www.google.com/webmasters/igoogle/
translate.html

Component Time [ms]

initialization upon input
find text bounding box 71.0
initialize tracker 5.0

background thread
text location refinement 414
extract colors 10
OCR 630
render translation texture 10

per-frame operations
capture & preprocess frame 21.9
tracking 8.5
render AR overlay & display frame 7.7
total per-frame 38.1

Table 1. Average execution times on the Nokia N900 for the main
steps of the processing pipeline. With the expensive steps of-
floaded into a background thread, the system maintains a frame
rate of about 26 fps.

The graphical augmentation was implemented in
OpenGL ES 2, leveraging the device’s GPU; the translated
text is rendered with OpenCV and then passed to the ver-
tex shader along with the transformation estimated by the
tracker, and finally the fragment shader renders the texture
onto the current frame.

HTTP requests to and responses from Google’s online
translation service are handled with the curl library.

5. Evaluation
Runtime. Table 1 presents an overview of the execution
times of the main system components on the N900. As the
expensive steps are offloaded into a background thread, the
system maintains interactive frame rates for tracking and
live feedback throughout the computation.

Text detection accuracy. We used the ICDAR 2003 de-
tection dataset5 to evaluate our text localization method.
This dataset contains 251 images of varying size with at
least one word in each image. Ground truth is provided in
the form of a horizontal bounding box for each word.

As our algorithm was designed to work with video
frames of a fixed size, we resized the images to 320x240
pixels. To conduct automated evaluation, we simulate the
required user input: as starting point c, we take the center of
the rectangle provided by the dataset and we adjust it prop-
erly to the new dimensions. As the dataset only provides
an enclosing horizontal rectangle, and since our algorithm
computes the (more accurate) quadrilateral, we then calcu-
late the minimal enclosing horizontal rectangle to be able to

5http://algoval.essex.ac.uk/icdar/Datasets.html



compare against the provided ground truth.
The performance measures proposed in [12] are based

on a matching score mp between two text area rectangles,
which is defined as the area of the intersection divided by
the area of the minimum bounding box containing both rect-
angles. mp is 1 for two identical rectangles and 0 for non-
intersecting pairs.

For automatic detectors, there will not be a unique 1:1
matching between detected and ground truth areas, hence
the respective best mp for each detected and ground truth
area is taken and subsequently averaged to yield precision
and recall, respectively. Different values for precision and
recall thus result from detecting too many or too few ar-
eas, but no distinction is made between too large and too
small areas. However, due to our manual “seeding” of the
algorithm, there is guaranteed to be a 1:1 matching, and
therefore the ICDAR definition of precision and recall both
default to the average mp for our algorithm. For further
analysis, we also calculate pixel-wise precision and recall
(e.g., as used by [14]), i.e., the ratio of pixels correctly la-
beled as text vs. all pixels labeled as text, and the ratio of
pixels correctly labeled as text vs. all text pixels.

We first optimized the values of our parameters (cf. Sec-
tion 3.1) using the training part of the ICDAR set, then eval-
uated the metrics on the test part.

We obtained a pixel-wise precision and recall of 31%
and 68%, respectively, and an average mp = ICDAR pre-
cision of 41%. This falls within the middle range of values
published in [12], but cannot compete with the best scoring
algorithms in [12] and [6], which achieve precision and re-
call values of 60 – 70%. It should again be noted that our
algorithm requires a single point as input, while the other
algorithms are fully automatic, but also that our algorithm
runs in less than 0.5 s on a mobile device and is hence one
to two orders of magnitude faster than the aforementioned
algorithms (see timings in [6, 12]).

A few examples of good and bad detection are shown in
Fig. 5. The algorithm is prone to “overshoot” all the way to
the borders of the image for non-uniform backgrounds, but
rarely cuts off letters. Note that the latter error is more fatal
in our application than the former (in which case the OCR
still has a chance to ignore the extra parts).

OCR with and without dictionary. To test the OCR, we
used the ICDAR 2003 recognition dataset, which consists of
1110 images, each containing a single word, as well as the
corresponding ground truth strings. We then used the Lev-
enshtein distance [10] to measure the similarity between the
obtained and ground truth strings. Fig. 6 compares the re-
sults of the raw OCR with OCR plus the dictionary module
and shows that the dictionary has the potential of increas-
ing the percentage of correct words significantly; hence it is
promising to investigate appropriate, well-scaling solutions.

Figure 5. Examples of good (top and mid rows) and bad (bottom
row) text localization on the ICDAR 2003 dataset. The blue point
in each quadrilateral represents the (simulated) input of the user.
Our algorithm was able to very accurately detect the text at dif-
ferent scales and under perspective distortion. The failure cases
are mostly due to very non-uniform background and/or lighting
effects (first two). For very large letters, the expansion algorithm
used to detect the text’s bounding box (cf. Section 3.1.1) can stop
inside one of the letters (bottom right).
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Figure 6. Error (Levenshtein distance) measured between the ex-
tracted strings and the ground truth. Results are shown with and
without dictionary lookup.

Component test. We used our own set of 30 video clips
of various outdoor signs, each containing several words, to
further test the system as a whole and determine which com-
ponents cause failures. Here, both providing the user input
as well as evaluating the result was done manually. The
results are listed in Table 2.

As emerges from the table, the OCR is the most common
cause of failure, while the detector works correctly in 72 out
of 79 cases.

6. Conclusions
In this work, we presented a prototype for a real-time,

mobile, visual translation system, which requires only a sin-
gle tap on the word of interest and presents its result as a live
AR rendering.



Component # of words % of all failures % of all

detector failed 7 16.3 8.9
color est. failed 6 14.0 7.6
OCR failed 26 60.8 32.9
translation failed 4 9.3 5.1
correct result 36 of 79 – 45.6

Table 2. Reasons of failure of the detection-extraction-translation
process on a set of 30 video clips. If one component fails, the
later components are not evaluated — e.g., the OCR failed 26 times
although detector and color estimation delivered a good result.

We showed results quantifying the running time, the ac-
curacy of the semi-automatic text detection, the potential of
using a dictionary to improve the OCR, and the frequency
of failure of the different components.

Though the accuracy is not as high as with some text
detector systems, our algorithm achieved respectable preci-
sion and recall values on the difficult ICDAR dataset given
the constraints of real-time performance. Nevertheless, an
important aspect for future work would be to increase the
accuracy and robustness. A promising approach would be
to integrate the recent work by Epshtein et al. [6] and to
try to decrease the runtime requirements by, for example,
leveraging the seed point provided by the user.

The component-wise analysis revealed that the OCR en-
gine is the most likely cause of failure. Apart from waiting
for improved OCR and hoping that improved detection also
improves the OCR result, one could also leverage the out-
come of the tracker to fuse multiple images over time in
order to increase the image quality. Additionally, our eval-
uations suggest that the recognition result may be improved
by integrating a spell checker.

To our knowledge, we have developed the first fully op-
erational proof-of-concept system to enable users to per-
ceive text in the environment and in the language of choice
via the “magic lens” of AR with a single click.
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